Computer Aided Mechanical Engineering [Mechanical engineering]

Computer Aided Mechanical Engineering

Computer-aided engineering

Nonlinear static analysis of a 3D structure subjected to plastic deformations

(CAE) is the broad usage of computer software to aid in engineering analysis tasks. It includes, , , and optimization.

Overview[edit]

Software tools that have been developed to support these activities are considered CAE tools. CAE tools are being used, for example, to analyze the robustness and performance of components and assemblies. The term encompasses simulation, validation, and optimization of products and manufacturing tools. In the future, CAE systems will be major providers of information to help support design teams in decision making. Computer-aided engineering is used in many fields such as automotive, aviation, space, and shipbuilding industries.

In regard to information networks, CAE systems are individually considered a single node on a total information network and each node may interact with other nodes on the network.

CAE systems can provide support to businesses. This is achieved by the use of reference architectures and their ability to place information views on the business process. Reference architecture is the basis from which information model, especially product and manufacturing models.

The term CAE has also been used by some in the past to describe the use of computer technology within engineering in a broader sense than just engineering analysis. It was in this context that the term was coined by Jason Lemon, founder of SDRC in the late 1970s. This definition is however better known today by the terms CAx and PLM.

CAE fields and phases[edit]

CAE areas covered include:

In general, there are three phases in any computer-aided engineering task:

  • Analysis solver (usually performed on high powered computers)
  • Post-processing of results (using visualization tools)

CAE in the automotive industry[edit]

CAE tools are very widely used in the automotive industry. In fact, their use has enabled the automakers to reduce product development cost and time while improving the safety, comfort, and durability of the vehicles they produce. The predictive capability of CAE tools has progressed to the point where much of the design verification is now done using computer simulations rather than physical prototype testing. CAE dependability is based upon all proper assumptions as inputs and must identify critical inputs (BJ). Even though there have been many advances in CAE, and it is widely used in the engineering field, physical testing is still used as a final confirmation for subsystems because CAE cannot predict all variables in complex assemblies (i.e. metal stretch, thinning).

References[edit]

  1. Saracoglu, B. O. (2006). "Identification of Technology Performance Criteria for CAD/CAM/CAE/CIM/CAL in Shipbuilding Industry". doi:10.1109/PICMET.2006.296739.


You might also like
3D Computer Aided Design Engineering
3D Computer Aided Design Engineering
Computer Aided Engineering Design Lec 1
Computer Aided Engineering Design Lec 1
Alvin & Company Inc. Alvin BDK-1E Kit-beginners Dftg Engineering
Office Product (Alvin & Company Inc.)
  • 12-Inch plastic architectural scale
  • 12 in. x 16 in. mesh bag
  • Practice cross section pad
  • 6-Inch compass & 6 in. divider
  • 10-Inch 30/60 triangle
Bachelor of Engineering in Computer Aided Engineering and
Bachelor of Engineering in Computer Aided Engineering and ...
Computer Aided Mechanical Engineering
Computer Aided Mechanical Engineering
Related Posts