Case Western Reserve University Mechanical Engineering [Mechanical engineering]

Case Western Reserve University Mechanical Engineering

Online MS in Mechanical Engineering at Case Western Reserve

This course aims to equip students with tools for solving mathematical problems commonly encountered in mechanical engineering. The goals are to enable the student to properly categorize the problem in a variety of ways, to identify appropriate approaches to solving the problem and to choose effective numerical solution methods. The course covers analytical and computational approaches to solution linear and nonlinear problems in both discrete and continuous systems. Computational approaches include direct methods such as finite difference methods and approximation methods based on a variational approach, such as finite elements. The course is built around specific examples from solid mechanics, dynamics, vibrations, heat transfer and fluid mechanics, represented by initial value problems, eigenvalue problems and boundary value problems.

EMAE 456 Micro-Electro-Mechanical Systems in Biology and Medicine (BioMEMS)

Microscale technologies have enabled advanced capabilities for researchers in unexplored territories of cells in biology and medicine. Biological (or Biomedical) Micro-Electro-Mechanical Systems (BioMEMS) involve the fundamentals of mechanics, electronics and advanced microfabrication technologies with specific emphasis on biological applications. BioMEMS is an interdisciplinary research area which brings together multiple disciplines including, mechanical engineering, biomedical engineering, chemical engineering, materials science, electrical engineering, clinical sciences, medicine, and biology. BioMEMS based technologies have found real world applications in tissue engineering, implantable microdevices, proteomics, genomics, molecular biology, and point-of-care platforms. This course aims to: (1) introduce the need for miniaturized systems in biology and medicine and the fundamental design and microfabrication concepts, (2) introduce the basics of microscale manipulation of cells and biological agents employing the fundamentals of microscale behaviors of fluids and mechanical systems, (3) expose the students to applications of BioMEMS and on-chip technologies in biology and medicine with clinical impact. Recommended Preparation: ENGR 200, ENGR 225, EMAE 285, BIOL 325, EECS 424, and ECHE 483

EMAE 460 Theory and Design of Fluid Power Machinery

This course focuses on fluid mechanics and thermodynamics aspects of the design of fluid power machinery. Examples and applications of theoretical and design analyses are drawn from axial and radial flow turbomachinery, positive displacement devices and their components.

EMAE 480 Fatigue of Materials

This course addresses the fundamental and applied aspects of fatigue in metals, polymers and ceramics. Topics include behavior of materials in stress and strain cycling, methods of computing cyclic stress and strain, and cumulative fatigue damage under complex loading. The application of linear elastic fracture mechanics to fatigue crack propagation is explored, as are mechanisms of fatigue crack initiation and propagation, and mechanistic and probabilistic approaches to fatigue life prediction. The course also uses case histories to illustrate fatigue failures and identify practical approaches to mitigate fatigue and prolong life.



You might also like
Laura Smith- Case Western Reserve University MEM Student
Laura Smith- Case Western Reserve University MEM Student
Molly Kersey- Case Western Reserve University MEM Student
Molly Kersey- Case Western Reserve University MEM Student
Case Western Reserve University New Student Orientation
Case Western Reserve University New Student Orientation
Case Western Reserve University
Case Western Reserve University
Lecture notes for the fifth annual one week short course on Hierarchical approach in water resources planning and management,: May 17-21, 1976, Case ... Western Reserve University, Cleveland, Ohio
Book (Case Western Reserve Univ.?])
Related Posts